511 research outputs found

    Robust curvature extrema detection based on new numerical derivation

    Get PDF
    International audienceExtrema of curvature are useful key points for different image analysis tasks. Indeed, polygonal approximation or arc decomposition methods used often these points to initialize or to improve their algorithms. Several shape-based image retrieval methods focus also their descriptors on key points. This paper is focused on the detection of extrema of curvature points for a raster-to-vector-conversion framework. We propose an original adaptation of an approach used into nonlinear control for fault-diagnosis and fault-tolerant control based on algebraic derivation and which is robust to noise. The experimental results are promising and show the robustness of the approach when the contours are bathed into a high level speckled noise

    Wiener algebra for the quaternions

    Get PDF
    We define and study the counterpart of the Wiener algebra in the quaternionic setting, both for the discrete and continuous case. We prove a Wiener-L\'evy type theorem and a factorization theorem. We give applications to Toeplitz and Wiener-Hopf operators

    On Some Geometric Properties of Slice Regular Functions of a Quaternion Variable

    Full text link
    The goal of this paper is to introduce and study some geometric properties of slice regular functions of quaternion variable like univalence, subordination, starlikeness, convexity and spirallikeness in the unit ball. We prove a number of results, among which an Area-type Theorem, Rogosinski inequality, and a Bieberbach-de Branges Theorem for a subclass of slice regular functions. We also discuss some geometric and algebraic interpretations of our results in terms of maps from R4\mathbb R^4 to itself. As a tool for subordination we define a suitable notion of composition of slice regular functions which is of independent interest

    Memory functions and Correlations in Additive Binary Markov Chains

    Full text link
    A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a memory function, and its relation to the correlation properties of the systems are examined. Various methods for finding the memory function via the correlation function are proposed. The inverse problem (calculation of the correlation function by means of the prescribed memory function) is also solved. This is demonstrated for the analytically solvable model of the system with a step-wise memory function.Comment: 11 pages, 5 figure

    Controlling the equation of telegraphy and active restoration of some signals

    Get PDF
    We are compensating the distorsion of an input signal along an electric line, which is modellised by the telegraph equation . Thi s control synthesis, which is corroborated by several simulations, continues some previous works on the wave, the heat and th e Euler-Bernoulli equations . It also employs operational calculus and the algebraic interpretation of controllability obtained thank s to module theory. It extends to infinite dimensional systems the motion planning of flat nonlinear systems .On corrige la distorsion d'un signal le long d'une ligne électrique, modélisée par l'équation des télégraphistes. Cette commande, corroborée par des simulations, prolonge des travaux antérieurs sur les équations des cordes vibrantes, de la chaleur et des verges vibrantes. Elle fait appel au calcul opérationnel et à l'interprétation de la commandabilité obtenue grâce à la théorie algébrique des modules. On généralise, ainsi, à la dimension infinie la planification de trajectoires des systèmes non linéaires plats

    Robust Linear Longitudinal Feedback Control of a Flapping Wing Micro Air Vehicle

    Get PDF
    This paper falls under the idea of introducing biomimetic miniature air vehicles in ambient assisted living and home health applications. The concepts of active disturbance rejection control and flatness based control are used in this paper for the trajectory tracking tasks in the flapping-wing miniature air vehicle (FWMAV) time-averaged model. The generalized proportional integral (GPI) observers are used to obtain accurate estimations of the flat output associated phase variables and of the time-varying disturbance signals. This information is used in the proposed feedback controller in (a) approximate, yet close, cancelations, as lumped unstructured time-varying terms, of the influence of the highly coupled nonlinearities and (b) the devising of proper linear output feedback control laws based on the approximate estimates of the string of phase variables associated with the flat outputs simultaneously provided by the disturbance observers. Numerical simulations are provided to illustrate the effectiveness of the proposed approach
    • …
    corecore